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In numerical simulations of unstable flows the absolute or convective nature of the
instability can be modified by numerical effects. We introduce a convective/absolute
analysis of the dispersion relations associated with discretized operators. This analy-
sis leads to conditions on the discretization parameters in order to avoid numerical
transition from absolute to convective instability and vice versa. In numerical simu-
lations of non-parallel flows, local numerical transitions, of the kind described in this
paper, could lead to the wrong global dynamics.c© 1998 Academic Press

1. INTRODUCTION

In the last ten years the notions of local/global and absolute/convective instabilities have
been recognized as essential for understanding the spatio-temporal dynamics of open flows.
The concept of absolute and convective instability was originally introduced in plasma
physics [1, 2] and has been successfully applied to open flow dynamics [7, 8]. It applies
to parallel flows, i.e., flows invariant under translation in the streamwise directionx. The
criterion used to discriminate between absolute and convective instability is based on the
linear impulse response, i.e., the Green functionG(x, t), in the “laboratory” frame, which
is the reference frame singled out by boundary conditions. The instability isabsolutewhen
G(x, t) becomes infinite with time at any fixed locationx in the laboratory frame and
convectivewhen it goes to zero in the laboratory frame (and to infinity in at least one
different Galilean frame). In the laboratory frame, a convectively unstable flow will relax
everywhere to the basic state as the transient is advected downstream. The flow will behave
as a spatial amplifier when spatially localized harmonic forcing is applied. By contrast,
in an absolutely unstable flow, a transient will initially grow in place and then saturate,
leading to self-sustained oscillations. For spatially evolving flows the global behavior of
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the flow can be deduced by a local analysis, i.e., an analysis in which in each point the
local parameters are frozen and a parallel flow analysis is developed, if the instability
wavelength is small compared to the characteristic inhomogeneity length. Flows that are
locally convectively unstable everywhere behave as noise amplifiers while a finite region
of local absolute instability is necessary to obtain a global instability leading the flow to an
intrinsic oscillatory behavior [4].

The numerical simulation of unsteady flows has become a routine task in many fields
of science and technology such as meteorology, plasma physics, or applied aerodynamics.
In a numerical simulation, changing the absolute or convective nature of the instability,
responsible for the time-dependent behavior, can result in the wrong global dynamics of
the flow, for instance a transition from a noise amplifier behavior to an oscillator behavior
or vice versa. The problem we analyze in this paper is that the absolute and convective
nature of the instability can be modified by numerical effects. This is obvious when one
considers that the dispersion relation associated with the physical system is altered by
the numerical scheme. It is thus important to ensure that, at least locally, the nature of the
instability is not changed by numerical effects. Here we analyze the simplest case in which
this phenomenon can be observed, i.e., a finite difference numerical simulation of a parallel
one-dimensional unstable flow. This analysis can be extended to non-parallel flows by using
the parallel analysis locally just as is done for the von Neumann numerical stability analysis
of non-parallel flows. We hope that the techniques we shall explain below will prove useful
in much the same way.

The idea of analyzing the dispersion relation of a numerical scheme in order to better un-
derstand its properties, such as the numerical group velocity, is not new and a review is given
by Trefethen [14]. However, all previous analyses were limited to neutral or stable flows, to
real wavenumbers and frequencies, and did not consider the convective or absolute nature of
the instabilities. In this paper we consider both stable and unstable dissipative systems, com-
plex frequencies and wavenumbers, and we analyze the dispersion relation associated with
the discretized operator to detect the convective or absolute nature of numerical solutions.

The numerical effects we analyse here are not to be confused with the ones induced
by numerical boundary conditions. Buell and Huerre [3] showed that global self-sustained
oscillations can be observed in numerical simulations of flows that are convectively unstable
everywhere and should behave just as noise amplifiers. This spurious global behavior is due
to the outflow numerical boundary conditions that create destabilizing pressure feedback
loops [3]. By contrast the numerical effects we analyse here appear also in infinite domains
and for a model problem that does not allow pressure feedback: they are intrinsic to the
numerical discretization.

This paper is organized as follows. In Section 2 we introduce the Ginzburg–Landau
equation, used as a model in this paper, and three sample numerical schemes. The dispersion
relations associated with the model equation and its discretizations are briefly reviewed in
Section 3. In Section 4 we apply the temporal stability and convective/absolute analyses to
the considered dispersion relations and discuss them in Section 5. Finally, some conclusions
are drawn in Section 6.

2. THE MODEL EQUATION AND ITS DISCRETIZATION

We illustrate our points on the linearized Ginzburg–Landau operator. This is the sim-
plest model that can show convective and absolute instabilities [7]. The Ginzburg–Landau
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equation describes the wave amplitude in a bifurcating spatially extended system and has
been considered to model the transition of closed [10] as well as open [13] fluid dynamical
systems

∂t A = µA−U∂x A+ γ ∂xx A, (1)

with U the mean (positive) advection velocity,µ the bifurcation parameter, andγ the
(positive) diffusion coefficient. We consider three sample discretizations of Eq. (1). The
spatial derivatives are discretized by centered, symmetric second-order formulas in all
the schemes. If we define the functionf (x, t)=µA−U∂x A+ γ ∂xx A we have

f n
j = µAn

j −U
An

j+1− An
j−1

21x
+ γ An

j+1− 2An
j + An

j−1

1x2
, (2)

where An
j = A(xj , tn) and f n

j = f (xj , tn). The grid is equally spaced so thatxj = j1x
andtn= n1t . The first scheme (EE) is based on Euler-explicit discretization in time, the
second (CN) on a Crank–Nicholson (semi-implicit) discretization, and the third (EI) on an
Euler-implicit one.
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(CN)
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(3)

The EE and EI schemes are first-order accurate in time, while the CN one in second-order
accurate.

3. PHYSICAL AND NUMERICAL DISPERSION RELATIONS

If we consider solutionsA(x, t) of Eq. (1) in the form of normal modes̃Aei (kx−ωt), where
k andω are the complex spatial wavenumber and temporal frequency respectively, we obtain
thephysical dispersion relation:

ω = Uk+ i (µ− γ k2). (4)

In a similar fashion, by considering solutionsAn
j of Eq. (3) in the form of normal modes

Ǎei (kxj−ωtn), we obtain the correspondingnumerical dispersion relations,

e−iω1t − 1

1t
= F(k;1x, µ,U, γ ) (EE)

−2i tanω1t

1t
= F(k;1x, µ,U, γ ) (CN)

1− eiω1t

1t
= F(k;1x, µ,U, γ ) (EI)

(5)
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with

F = µ− iU

1x
sink1x + 2γ

1x2
(cosk1x − 1). (6)

One can immediately verify that for1x→ 0 and1t→ 0, we recover the physical dispersion
relation, Eq. (4), for the three numerical dispersion relations.

It is convenient to introduce the dimensionless variables ˆω=ωγ/U2, k̂= kγ /U , and
parameters ˆµ=µγ/U2, R=1xU/γ , and S=1tU2/γ . In the literature on numerical
stability analysis the two parametersσ =U1t/1x andβ = γ1t/1x2 are usually used.
They are related as follows to the parameters that we use in this study:σ = S/R, β = S/R2.
The physical dispersion relation, Eq. (4), may then be cast in dimensionless form,

ω̂ = k̂+ i (µ̂− k̂2
) (7)

as well as the numerical dispersion relations, Eq. (5)

e−i ω̂S− 1

S
= F̂(k̂; R, µ̂) (EE)

−2i tanω̂S

S
= F̂(k̂; R, µ̂) (CN)

1− ei ω̂S

S
= F̂(k̂; R, µ̂) (EI)

(8)

with

F̂ = µ̂− i

R
sink̂ R+ 2

R2
(cosk̂ R− 1). (9)

4. CONVECTIVE/ABSOLUTE INSTABILITY ANALYSIS

As pointed out in the Introduction, the stable and convectively or absolutely unstable
nature of a parallel flow is defined by the behavior of its impulse responseG(x, t) but can
also be deduced from the analysis of its dispersion relation [1, 2, 7]. A stable flow admits
only damped temporal modes, i.e.,Im[ω̂(k̂)]< 0 for every real wavenumberk̂, otherwise
it is unstable. For the physical dispersion relation, Eq. (7), we have a bifurcation from a
stable to an unstable behavior for ˆµ= 0 with a most amplified wavenumberk̂max= 0.

For unstable flows the behavior of the Green’s function at afixed(in the laboratory frame)
spatial locationx is dominated by theabsolute wavenumber k0 corresponding to a zero
group velocitydω̂/dk̂(k̂0)= 0. An observer atx will see the impulse response dominated
by theabsolute frequencŷω0= ω̂(k̂0). If Im[ω̂0]< 0 we are in a convectively unstable
regime, whereas the instability is absolute ifIm[ω̂0]> 0. The absolute wavenumber and
frequency correspond to a singularity of the dispersion relation that must fulfill a pinching
requirement [1]. The determination of the convective or absolute nature of an instability
based on the analysis of the singular points of the dispersion relation is known as the
Briggs–Bers criterion [1, 2].

For the physical dispersion relation, the complex group velocity isdω̂/dk̂= 1− 2i k̂,
the absolute wavenumber isk̂0=−i /2, and the absolute frequency is ˆω0= i (µ̂− 1/4); the
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flow will thus be physically convectively unstable for 0<µ̂<1/4 and physically absolutely
unstable for ˆµ≥ 1/4.

We performed an absolute/convective stability analysis of the numerical schemes by
using the Briggs–Bers criterion applied to the numerical dispersion relations, Eq. (8). For
this analysis, limitations on frequency and wavenumber bandwidths must be introduced
due to the numerical discretization:−π/R< k̂<π/R and−π/S< ω̂<π/S. While the
temporal stability analysis of numerical dispersion relations is fully equivalent to the widely
used von Neumann stability analysis, the convective/absolute instability analysis applied
to the dispersion relations of numerical schemes is the main novelty that we introduce in
this paper. The detailed results of the analysis are reported in Appendix A, and we discuss
them, in the following sections, separately for the three numerical schemes we considered.
As the spatial discretization is the same for the three schemes, the stability results forS= 0
are the same for the three schemes.

4.1. Euler Explicit Scheme

The stability diagrams of the EE scheme are reported in Fig. 1. The physically stable case
is considered in Fig. 1a. As it is well known, this scheme produces a numerical instability
over much of the(R, S) plane. We found that this numerical instability is absolute in a large
region, and convective in a narrow band. The physically neutral case(µ̂= 0), in which
the Ginzburg–Landau equation reduces to the convection-diffusion one, is considered in
Fig. 1b. The curve which separates the stable from the unstable regions is the classical
result of the von Neumann stability analysis (see, for example, [6]). In this case it is found
that the absolute instability boundary, found by a local analysis, exactly coincides with
the global instability boundary, obtained with the spectral radius criterion, when Dirichlet
boundary conditions are enforced [6, 12]. The absolute nature of the instability allows an

FIG. 1. Stability diagrams for the Euler explicit scheme in (a) a physically stable situation, ˆµ=−0.125;
(b) a physically neutral situation, ˆµ= 0; (c) a physically convectively unstable situation, ˆµ= 0.125; and (d) a
physically absolutely unstable situation, ˆµ= 0.26. The unstable regions are depicted in gray, light gray for a
convective instability, and dark gray for an absolute one.
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amplified energy radiation from the downstream boundary into the computational domain
and thus a global instability. In our view, the concepts of absolute and convective insta-
bility applied to numerical schemes should probably permit the extension of the analysis
of Trefethen [15], who treated the instability of difference models for hyperbolic initial
boundary value problems, to non-hyperbolic and/or unstable systems. This extension is
currently under consideration. A physically convectively unstable situation is considered in
Fig. 1c. Here, the EE scheme could produce numerically absolutely unstable solutions in a
large region of theR, S plane. A physically absolutely unstable situation is considered in
Fig. 1d where, if ˆµ<1/2 (less than twice the physical absolute transition critical value) a
convective instability could be diagnosed even for smallS in a large range ofR values.

To ensure numerical stability, even in physically unstable situations, the stability condi-
tions of the physically neutral case are usually enforced. For the EE scheme this corresponds
to the limitationS< R2/2 for R< 2. In the convectively unstable regime, the limitations on
S to avoid transition to a numerical absolute instability are less stringent than the stability
condition whenR< 2. In the absolute instability regime, however, only a limitation onR
is necessary to avoid a transition to a numerical convective instability.

4.2. Crank–Nicholson Scheme

As it is well known, this scheme is always numerically stable when the solution is phy-
sically stable so we discuss only the physically unstable regime. A physically convectively
unstable situation is considered in Fig. 2a where the scheme could produce numerical
solutions that are absolutely unstable for everyS if a too coarse spatial discretization is
chosen (largeR). A physically absolutely unstable situation is considered in Fig. 2b where
a convectively unstable numerical solution could be observed for every time step in a given
range ofR. We observe that only the first band (the left one) of absolute instability is the
“good” one as the second one (the one on the right) is an absolute instability with a wrong
absolute wavenumber. An interesting feature of the CN scheme is that the stability and
absolute instability boundaries do not depend onSbut only onR: convergence tests based
only on time step refinements could leave the convergence path always in the wrong region.

4.3. Euler Implicit Scheme

We report in Fig. 3 the stability diagrams of the EI scheme in theR, Splane. As for the
CN scheme we discuss only the physically unstable regime as the scheme is numerically
stable in the physically stable regime. A physically convectively unstable case is considered

FIG. 2. Stability diagrams for the Crank–Nicholson scheme in (a) a physically convectively unstable situation,
µ̂= 0.125; and (b) a physically absolutely unstable situation, ˆµ= 0.26. The unstable regions are depicted in gray,
light gray for a convective instability, and dark gray for an absolute one.
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FIG. 3. Stability diagrams for the Euler implicit scheme in (a) a physically convectively unstable situation,
µ̂= 0.125, and (b) a physically absolutely unstable situation, ˆµ= 0.26. The unstable regions are depicted in gray,
light gray for a convective instability, and dark gray for an absolute one.

in Fig. 3a, where a region of numerical absolute instability is detectable for large values of
R. In that region, for instance, convergence tests based only on time step reductions would
always be contained in the wrong region. A physically absolutely unstable situation is
considered in Fig. 3b. The region of numerical stabilization increases when ˆµ is increased
and the numerically convectively unstable region is reduced. In contrast to the behavior
observed for the explicit scheme, the numerical stabilization need not be preceded by a
change from absolute to convective instability.

5. DISCUSSION

To verify the results obtained in Section 4, numerical tests have been performed. The
three schemes considered were implemented using the homogeneous Dirichlet boundary
condition atx=−L/4 andx= 3L/4. In order to detect the absolute or convective nature
of the numerical solution we analyzed the evolution of the “discretized Green function,”
i.e., the evolution of an initial condition having a value of 1 forx= 0 and zero everywhere
else. According to the definition, given in Section 1, the instability is convective if, for
sufficiently largen, |G(0, tn)| decreases and is absolute if it increases. The numerical results
were obtained withU = 1, γ = 1, L = 640 and, to avoid finite domain effects, the runs were
stopped before the wavepacket could reach the boundaries of the computational domain. The
numerical results, obtained for some sample point in the(R, S) parameter space, confirmed
the predictions we developed in Section 4. We found remarkable how easily results affected
from numerical transitions could be confused with physically correct results.

For open spatially evolving flows it is believed that the global dynamics can be quali-
tatively explained from the nature of the local stability characteristics, i.e., the absolute or
convective nature of the instability of the parallel flows associated with the velocity profiles
of each streamwise section [7]. For a global instability leading to self-sustained oscillations
a finite region of absolute instability is necessary [4, 5], whereas flows that are everywhere
locally convectively unstable behave as noise amplifiers [7].

Just as in the physical situation, numerical transitions from local convective instability
to local absolute instability, in some regions of the computational domain, could affect
the qualitative global behavior of the numerical solution for simulations of even complex
spatially evolving flows. On one hand, in a flow that is physically locally convectively
unstable everywhere and thus behaves as a noise amplifier, the existence of a finite region
of local numerical absolute instability could lead to spurious self sustained oscillations; on
the other hand, a numerical transition from local absolute to local convective instability
could lead to the numerical suppression of global instabilities.
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For flows that experience “physically” a global instability, local transitions can lead to an
underestimation or an overestimation of the critical value of the bifurcation parameter. For
instance, the onset of the von K´armán vortex street in the circular cylinder wake is produced
by a global Hopf bifurcation and is due to the presence of a finite region of local absolute
instability in the near wake [9]. In this case, the size of the local absolute instability region
can be modified by the numerical effects we described. If the numerical scheme promotes
transitions from local convective to local absolute instability the region of numerical absolute
instability is larger than the physical one and the critical Reynolds number for the global
instability is underestimated. If, on the contrary, transitions from local absolute instability
to local convective instability are promoted by numerical effects, the numerical absolute
instability region is smaller than the physical one and thus the critical Reynolds number
will be overestimated. Such numerical effects could explain the large scatter (between 45
and 54) of critical Reynolds numbers obtained, from numerical simulations, for the circular
cylinder wake.

It is already well known that boundary conditions enforced on the boundaries of the
computational domain may also affect the global dynamics of the simulated flow. Buell
and Huerre [3] showed that destabilizing pressure feedback loops can be generated by the
influence of outflow numerical boundary conditions on the upstream boundary, leading
flows that are convectively unstable everywhere to spurious global self-sustained oscilla-
tions. It is important to stress that the numerical effects we analyse here, in contrast to
numerical effects of the type described in [3], appear also in infinite domains and for a
model problem that does not allow pressure feedback: they are intrinsic to the numerical
discretization just as the numerical instabilities analyzed with von Neumann stability anal-
yses. The point to be retained is that even if one enforces correctly the outflow boundary
conditions and the von Neumann stability conditions are satisfied a wrong behavior of the
flow may be still induced by numerical transitions from convective to absolute instability
and vice versa.

It should also be remarked that the region of the computational plane near the origin is
not the only interesting one. Large values of the spatial step1x, and thus of the parameter
R, may be attained for instance in meteorological applications such as global circulation
simulations or, in general, in large eddy simulations of turbulent flows. Over a large range of
R it may be seen from the results presented in the previous section that a wrong behavior may
be maintained even asS→ 0. In our sample discretizations we considered only centered
schemes for spatial discretizations and perhaps theseS-independent numerical transitions
for large valuesR may be avoided by using others spatial discretization schemes.

6. CONCLUSIONS

In this article we showed that in numerical simulations of unstable flows the convective
or absolute nature of a physical instability can be modified by numerical effects. Standard
convergence tests in the1x,1t plane are not sufficient to avoid erroneous behavior of the
solution because the convergence path could be contained in the wrong region.

The Briggs–Bers criterion, widely applied to physical dispersion relations to determine
the absolute or convective nature of an instability for a continuous operator, is here applied to
dispersion relations associated with discretized operators. This type of investigation reveals
the impact of the numerical effects on the absolute/convective nature of the instabilities in
the numerical solution and allows for the design of appropriate convergence paths in the
1x,1t plane. It is found that some limitations in the time step1t and/or in the mesh spacing
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1x are necessary to avoid numerical transitions from convective to absolute instabilities
and conversely. For the model equation considered, namely the Ginzburg–Landau equation,
three sample discretizations were considered: an Euler-explicit, a Crank–Nicholson, and an
Euler-implicit one. For none of these discretizations the numerical stability requirements,
given by a von Neumann stability analysis, automatically avoid a wrong convective/absolute
behavior of the numerical solution. Numerical simulations validated the predictions derived
from the analysis of numerical dispersion relations.

Our analysis has been developed for parallel flows of infinite extent where the theory
exactly applies just as the classical von Neumann stability analysis. However, even if it
strictly applies to parallel flows, a local von Neumann analysis, and the numerical stability
conditions deriving from it, are commonly used to avoid numerical instability in simulations
of spatially evolving flows (see for instance [11]). In the same spirit, we suggest using our
analysis and criteria as local ones, to ensure that the local nature of the instability, and
eventually the global dynamics of the flow, are not altered by the numerical scheme.

APPENDIX A: NUMERICAL STABILITY AND CONVECTIVE/ABSOLUTE

INSTABILITY BOUNDARIES

A.1. Conditions for Temporal Instability

For µ̂≤ 0 (physically stable situation):

0≤ R≤ 2 R≥ 2

EE S> 2R2

4−µ̂R2 S> 2−µ̂R2+
√
µ̂2R4−4µ̂2R2−4µ̂R2+16µ̂
µ̂2R2−4µ̂+1

CN Never unstable Never unstable

EI Never unstable Never unstable

For µ̂>0 (physically unstable situation):

0≤ R≤ 2√
µ̂

R≥ 2√
µ̂

EE ∀S ∀S
CN ∀S ∀S
EI S< 2/µ̂ S< 2R2

µ̂2R2−4

A.2. Conditions for Absolute Instability (AI)

For µ̂<0 (physically stable situation):

0≤ R≤ 2 R≥ 2

EE S> 2R2

2−µ̂R2+√4−R2 S> 4−2µ̂2R2

µ̂2R2−4µ̂+1

CN Stable Stable

EI Stable Stable
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For 0<µ̂<0.25 (physically convectively unstable situation):

0≤ R≤ 2 2≤ R≤
√

2
µ̂

R≥
√

2
µ̂

EE S> 2R2

2−µ̂R2+√4−R2 S> 4−2µ̂R2

µ̂2R2−4µ̂+1
S> 4−2µ̂R2

µ̂2R2−4µ̂+1

CN Never AI Never AI ∀S
EI S< 2 µ̂R2−2

µ̂2R2−4µ̂+1
S< 2 µ̂R2−2

µ̂2R2−4µ̂+1
S< 2 µ̂R2−2

µ̂2R2−4µ̂+1

For 0.25<µ̂<0.5 (physically absolutely unstable situation):

0≤ R≤
√

4µ̂−1
µ̂2

√
4µ̂−1
µ̂2 ≤ R≤ 2 2≤ R≤

√
2
µ̂

R≥
√

2
µ̂

EE ∀S S> 2R2

2−µ̂R2+√4−R2 S> 4−2µ̂R2

µ̂2R2−4µ̂+1
S> 4−2µ̂R2

µ̂2R2−4µ̂+1

CN ∀S Never AI Never AI ∀S

EI ∀S S< 2 µ̂R2−2
µ̂2R2−4µ̂+1

S< 2 µ̂R2−2
µ̂2R2−4µ̂+1

S< 2 µ̂R2−2
µ̂2R2−4µ̂+1

For µ̂>0.5 (physically absolutely unstable situation):

∀R

EE ∀S
CN ∀S
EI S< 2 µ̂2R2−2

µ̂2R2−4µ̂+1
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